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Abstract. A new, non adiabatic, description of the H+
2 molecular ion and its isotopomers is proposed: the

molecular system is treated as a three body Coulomb system, in the framework of non relativistic quantum
mechanics. The method takes advantage of the dynamical symmetries of the system. It relies on the choice
of the perimetric coordinates to describe the system, and of a generalized Hylleraas basis, in which the
Hamiltonian exhibits strong coupling rules. The method is described in detail both for S and P states (i.e.,
states of total angular momentum J = 0 or 1). We calculate the energies of all J = 0 or 1 vibrational
levels of the H+

2 and D+
2 molecular ions with a very high accuracy (typically 10−14 atomic unit). This a

considerable improvement over previous calculations. The dependence of these results on the proton to
electron mass ratio is also discussed.

PACS. 31.15.Ar Ab initio calculations – 31.15.Pf Variational techniques

1 Introduction

Since the early times of quantum mechanics [1], the H+
2

molecular ion has been studied in great detail, mainly be-
cause it is the simplest molecular system, involving only
one electron and two identical nuclei. It is also often stud-
ied in text books of molecular physics and quantum chem-
istry, in order to introduce chemical bounding and the
LCAO method [2]. It is also a prototype for the investi-
gation of effects beyond the Born-Oppenheimer approxi-
mation. Despite this apparent simplicity, the theoretical
study of H+

2 is a difficult problem, because it is a typical
three body Coulomb system.

During the last years, many theoretical studies of H+
2

and its isotopic species have provided us with highly ac-
curate predictions for the energy levels of those systems.
This renewed interest is partly due to new experimen-
tal results, especially on the polarisability of the H+

2 ion,
which has been extracted from the analysis of Rydberg
series of H2 [3–5], and partly to metrological applications:
the ratio M/m of the proton mass to the electron mass
could be deduced from a high precision measurement of
an optical transition in H+

2 , for instance between different
rovibrational levels of the 1sσg electronic ground state.

Up to now, three different methods have been used: the
first one is the variation-perturbation method developed

a e-mail: hilico@spectro.jussieu.fr
b Laboratoire associé au CNRS, UMR 8552

by Wolniewicz et al. [6], the second one is a variational
method using the full three body Hamiltonian, which has
been developed by several groups [7,8], and the last one
is a method derived from the physics of collisions, using a
transformed Hamiltonian [9]. More recently [10], we have
introduced a new method, first developed for atomic sys-
tems [11,12]. It is also a variational method, but it differs
from the previous ones by the choice of coordinates used
to describe the three body system. We use the so called
perimetric coordinates, in order to take advantage of the
dynamical symmetries of the three body Coulomb system.
Then, we can choose a basis in which the Hamiltonian
has strong coupling rules, and whose wavefunctions have
the correct long-range behavior, i.e. an exponential decay
with respect to each of the inter-particle distances. This
method can be used to obtain an accurate description of
the vibrationaly excited states.

The present paper is devoted to the description of
the method and its application to H+

2 , D+
2 and HD+. In

Section 2, we take advantage of all the geometric sym-
metries of the problem to reduce the Hamiltonian of the
three body system, and we show that this reduction pro-
vides us with a scalar Schrödinger equation for J = 0 or
1 (J being the total angular momentum of the system).
Section 3 is devoted to the numerical method used for
solving this scalar Schrödinger equation: we show that,
with perimetric coordinates, the use of a Hylleraas type
basis set turns the Schrödinger equation into a generalized
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eigenvalue problem involving sparse banded matrices,
which can be efficiently solved with the Lanczos algorithm.
In Section 4, we discuss the convergence of the method
and we present our results for the J = 0 and J = 1 vibra-
tional levels below the first dissociation limit, for H+

2 and
D+

2 . These results are compared with the most accurate
published values. We also give some informations on the
dependence of these results with M/m, and we discuss the
interest of a high resolution spectroscopy measurement in
H+

2 . Finally, the energies of the J = 0 states of HD+ are
given in Section 5.

2 Formalism

We here explain the structure of the exact wave-functions,
taking into account successively the rotational invariance,
the parity and (in the case of H+

2 and D+
2 ) the exchange

of the two identical particles. We assume that particle 3
is an electron with mass m and charge −e and particles 1
and 2 (not necessarily identical) have a charge +e. We
use atomic units where both m and e are taken equal to
one. Obviously, the 9 degrees of freedom of the three-body
system in the laboratory frame can be reduced to 6 in the
center of mass frame by setting:

RG =
M1R1 +M2R2 +mR3

M1 +M2 +m
,

R = R1 −R2,

r =
R1 + R2

2
−R3, (1)

where R1, R2, R3 are the positions of the three particles.
The centered Jacobi coordinates R and r represent the
relative positions of the two nuclei and the electron with
respect to their center or mass. If P and p denote the
canonically conjugate momenta, the Hamiltonian writes:

H =
p2

2
+

1
2µ12

(
P2 +

p2

4

)
+

p ·P
2µ0

− 1
||R/2 + r|| −

1
||R/2− r|| +

1
R
, (2)

where µ12 = M1M2/(M1 + M2) is the reduced mass of
particles 1 and 2, and 1/µ0 = 1/M1 − 1/M2. The two
exact symmetries of the Hamiltonian H are the rotational
invariance and the parity Π. In the case of H+

2 and D+
2 ,

the two nuclei are identical (M1 = M2), and the third
term of the Hamiltonian vanishes. The system is invariant
under the exchange P12 between particles 1 and 2.

2.1 Angular structure

Because of the rotational invariance, this Hamiltonian
commutes with the total angular momentum J = R ×
P + r× p. To take advantage of this symmetry, we intro-
duce angular and radial coordinates in the following way:
we use spherical coordinates (R, θ, ψ) in the fixed frame

for R, and cylindrical coordinates (ρ, φ, ζ) in the moving
frame (uR,uθ,uψ) for r. The three angular coordinates
are nothing but the Euler angles that describe the posi-
tion of the plane of the three particles in the laboratory
frame. Then the kinetic terms of the Hamiltonian can be
expressed with the angular operators J2, Jz , J ′z = J · uR

and J ′± = J · (uρ ± iuφ) as:

T1 =
p2

2
= T S

1 +
1

2ρ2
J ′ 2
z ,

T2 = P2 +
p2

4

= T S
2 +

1
R2

J2 +
1
ρ2

(
ζ2

R2
− ρ2

R2
+

1
4

)
J ′ 2
z

+
ζ

2ρR2

(
(J ′+ + J ′−)J ′z + J ′z(J

′
+ + J ′−)

)
+
(

ζ

ρR2

(
ρ
∂

∂ρ
+

1
2

)
− ρ

R2

∂

∂ζ

)
(J ′+ − J ′−),

T3 = p ·P

= T S
3 −

1
2R

(
∂

∂ρ
+

1
2ρ

)
(J ′+ − J ′−)

− 1
4Rρ

(
(J ′+ + J ′−)J ′z + J ′z(J

′
+ + J ′−)

)
− ζ

Rρ2
J ′2z .

(3)

T S
1 , T S

2 and T S
3 will be given below in equation (9). The

angular eigenfunctions DJ∗
M,T of J2, Jz and J ′z are related

to the matrix elements of the rotation operator [13]:

DJ∗
M,T (ψ, θ, φ) =

√
2J + 1

8π2
RJ∗M,T (ψ, θ, φ). (4)

Thanks to the rotational invariance of the problem, the
Hamiltonian commutes with J2 and Jz, but not with J ′z ,
because there is no invariance around the inter-nuclear
axis. Therefore, for given values of J and M , the wave-
functions can be expanded as:

ΨJM =
J∑

T=−J
DJ∗
M,T (ψ, θ, φ)ΦJMT (R, ρ, ζ). (5)

It involves 2J + 1 unknown radial functions which satisfy
2J+1 coupled Schrödinger equations. The wave-functions
can now be labelled by their parity (and by their exchange
symmetry in the case of H+

2 ). The effect of the parity Π
and of the exchange operator P12 on the vectors R and r
and on the coordinates (R, ρ, ζ, ψ, θ, φ) is:

Π: R→ −R P12: R→ −R
r→ −r r→ r
ψ → ψ + π ψ → ψ + π

θ→ π − θ θ→ π − θ
φ→ π − φ φ→ −φ
R→ R R→ R

ρ→ ρ ρ→ ρ

ζ → ζ ζ → −ζ.

(6)
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The symmetry properties of the DJ∗
M,T functions with re-

spect to Π and P12 are:

Π DJ∗
M,T (ψ, θ, φ) = (−1)J+TDJ∗

M,−T (ψ, θ, φ), (7)

P12 D
J∗
M,T (ψ, θ, φ) = (−1)JDJ∗

M,−T (ψ, θ, φ). (8)

We now successively study the simplest cases, namely the
J = 0 and J = 1 states and show how to solve the 2J + 1
coupled differential equations.

2.1.1 S states

The S states, corresponding to J = M = T = 0, are
even states because the angular dependence reduces to a
constant 1/

√
8π2. There is a single term in the expan-

sion, equation (5). Thus, the energy levels are determined
by a scalar radial Schrödinger equation with the effec-
tive Hamiltonian HS = T S

1 + (1/2µ12)T S
2 + (1/2µ0)T S

3 +V
where T S

1 , T S
2 and T S

3 are the terms of equation (3) that do
not depend on the angular momentum. The three kinetic
terms of the Hamiltonian as well as the potential energy
are:

T S
1 = −1

2

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂ζ2

)
,

T S
2 = − ∂2

∂R2
− 2
R

∂

∂R
−
(
ζ2

R2
+

1
4

)
∂2

∂ρ2
−
(
ρ2

R2
+

1
4

)
∂2

∂ζ2

−
(
ζ2

R2
− ρ2

R2
+

1
4

)
1
ρ

∂

∂ρ
+ 2

ζ

R2

∂

∂ζ
+ 2

ρζ

R2

∂2

∂ρ∂ζ
,

T S
3 = −

(
∂2

∂R∂ζ
− ζ

R

∂2

∂ρ2
+
ρ

R

∂2

∂ρ∂ζ
− ζ

Rρ

∂

∂ρ
+

2
R

∂

∂ζ

)
,

V = −1/

√(
ζ+

R

2

)2

+ρ2−1/

√(
ζ−R

2

)2

+ρ2+
1
R
· (9)

2.1.2 The P states

The P states correspond to J = 1. For each M value, the
expansion of the wave-function in equation (5) involves
three unknown radial functions. Because of the symme-
try of the Hamiltonian with respect to the parity Π, we
can describe the even and odd states separately. Since the
parity only affects the angular dependence of the wave-
functions, it is useful to introduce one even and two odd
angular functions on which the wave-functions may be
expanded.

Even P states are very similar to S states, be-
cause there is a single even angular function (D1∗

M,1 +
D1∗
M,−1)/

√
2, so that an even P wave-function simply

writes:

Ψ1M
e =

(D1∗
M,1 +D1∗

M,−1)
√

2
Rρ Φ1M

e (R, ρ, ζ). (10)

After multiplying the Schrödinger equation by Rρ,
the radial function Φ1M

e obeys the scalar generalized
Schrödinger equation:

HPe
Φ1M

e = ER2ρ2Φ1M
e , (11)

involving the effective Hamiltonian

HPe
= TPe

1 + (1/2µ12)TPe

2 + (1/2µ0)TPe

3 + V Pe

where:

TPe

1 = R2ρ2T S
1 −R2ρ

∂

∂ρ
,

TPe

2 = R2ρ2T S
2

+Rρ

(
−2ρ

∂

∂R
−2R

(
ζ2

R2
+

1
4

)
∂

∂ρ
+

2ρζ
R

∂

∂ζ

)
, (12)

TPe

3 = R2ρ2T S
3 +Rρ

(
2ζ

∂

∂ρ
− 2ρ

∂

∂ζ

)
,

V Pe
= R2ρ2V.

The Rρ factor is introduced in equation (10) in order to
regularize the terms of the Hamiltonian depending on the
angular momentum.

For odd P states, the situation is slightly more com-
plicated. Indeed, the expansion in equation (5) can be re-
duced to two terms associated with the two odd angular
functions:

Ψ1M
o = D1∗

M,0Φ
0(R, ρ, ζ) +

D1∗
M,−1 −D1∗

M,1√
2

Φ1(R, ρ, ζ).

(13)

In the angular basis {D1∗
M,0, (D

1∗
M,−1−D1∗

M,1)/
√

2}, the an-
gular operators involved in equation (3) are represented by
the matrices:

J2 =

(
2 0
0 2

)
, J ′+ − J ′− =

(
0 −2
2 0

)
, J ′ 2

z =

(
0 0
0 1

)
,

(J ′+ + J ′−)J ′z + J ′z(J
′
+ + J ′−) =

(
0 −2
−2 0

)
.

The two radial wave-functions Φ0 and Φ1 obey the two
following coupled Schrödinger equations:

HPo

(
Φ0

Φ1

)
= E

(
Φ0

Φ1

)
, (14)

where HPo
is a 2× 2 matrix of differential operators that

can be easily deduced from equation (3). Again, in order to
regularize the terms of the Hamiltonian depending on the
angular momentum, we follow Wintgen and Delande [14]
who proposed to introduce the two radial functions F and
G defined by:(

Φ0

Φ1

)
= M

(
F

G

)
with M =

(
ζ + R

2 ζ − R
2

ρ ρ

)
. (15)



452 The European Physical Journal D

F and G are the solutions of the two coupled Schrödinger
equations:

HPo

(
F

G

)
= EPo

(
F

G

)
(16)

with HPo
= M† HPo

M and EPo
= E M† M . The four

contributions to HPo
= TPo

1 +(1/2µ12)TPo

2 +(1/2µ0)TPo

3 +
V Po

can be written as:

TPo

1 =

 T dir
1 T exch

1

T̃ exch
1 T̃ dir

1

,

TPo

2 =

 T dir
2 T exch

2

T̃ exch
2 T̃ dir

2

,

TPo

3 =

 T dir
3 T exch

3

−T̃ exch
3 −T̃ dir

3

,
V Po

= M†M V S. (17)

In the previous equations, the ˜ operation is asso-
ciated with the change ζ → −ζ, i.e., for a radial
function f , we set f̃(R, ρ, ζ) = f(R, ρ,−ζ), and, for
an operator T , we set T̃ (R, ρ, ζ, ∂/∂R, ∂/∂ρ, ∂/∂ζ) =
T (R, ρ,−ζ, ∂/∂R, ∂/∂ρ,−∂/∂ζ).

The operators appearing in equation (17) are:

T dir
1 =

((
ζ +

R

2

)2

+ ρ2

)
T S

1 − ρ
∂

∂ρ
−
(
ζ +

R

2

)
∂

∂ζ
,

T exch
1 =

(
ζ2 − R2

4
+ ρ2

)
T S

1 − ρ
∂

∂ρ
−
(
ζ +

R

2

)
∂

∂ζ
,

T dir
2 =

((
ζ +

R

2

)2

+ ρ2

)
T S

2

−
(
ζ +

R

2

)
∂

∂R
+
(
ζ

R
− 1

2

)
ρ
∂

∂ρ

−1
2

(
ζ +

R

2
+ 2

ρ2

R

)
∂

∂ζ
,

T exch
2 =

(
ζ2 − R2

4
+ ρ2

)
T S

2

+
(
ζ +

R

2

)
∂

∂R
−
(
ζ

R
+

1
2

)
ρ
∂

∂ρ

−1
2

(
ζ +

R

2
− 2

ρ2

R

)
∂

∂ζ
,

T dir
3 =

((
ζ +

R

2

)2

+ ρ2

)
T S

3

−
(
ζ +

R

2

)
∂

∂R
+
(
ζ

R
− 1

2

)
ρ
∂

∂ρ

−1
2

(
ζ +

R

2
+ 2

ρ2

R

)
∂

∂ζ
,

T exch
3 =

(
ζ2 − R2

4
+ ρ2

)
T S

3

−
(
ζ +

R

2

)
∂

∂R
+
(
ζ

R
+

1
2

)
ρ
∂

∂ρ

+
1
2

(
ζ +

R

2
− 2

ρ2

R

)
∂

∂ζ
,

and M †M =

((
ζ + R

2

)2
+ ρ2 ζ2 − R2

4 + ρ2

ζ2 − R2

4 + ρ2
(
ζ − R

2

)2
+ ρ2

)
.

The radial factorizations introduced in equations (10, 13,
15) can be understood from the following argument: the
formalism used here was first developed to describe an
Helium atom (particles 1 and 2 become electrons and
particle 3 is the nucleus) [14]. For an infinitely mas-
sive electron, and if the Coulomb interaction between
the two electrons is neglected, the Hamiltonian becomes
H = p2

1/2 + p2
2/2 − 2/r1 − 2/r2. The exact solutions of

this three body problem are products of hydrogenic wave
functions in r1 and r2. Studying the structure of those so-
lutions [15,16] that correspond to either Pe or Po states
shows that it is always possible to factorize them as indi-
cated.

So far, we have taken into account only the rotational
and parity symmetries to derive the structure of the J =
0 and J = 1 wave-functions. The result stands for any
potential energy V depending only on the inter-particle
distances.

2.2 Exchange symmetry

In the case of H+
2 , we have an additional symmetry corre-

sponding to the exchange of the two protons. The T3 con-
tribution to the Hamiltonian disappears since 1/µ0 van-
ishes. The Hamiltonian then commutes with the exchange
operator P12: the wave functions are either symmetric or
antisymmetric with respect to P12. Like in the atomic
case, we will note here spatially symmetric (respectively
antisymmetric) states as singlets (resp. triplets). Alterna-
tively, they can be labelled para (resp. ortho). For J = 0,
we thus have singlet 1Se and triplet 3Se states. For J = 1,
the total parity can be either even or odd, thus producing
1Pe and 3Pe (even) states as well as 1Po and 3Po (odd)
states.

In fact radial wavefunctions of the singlet and triplet
Se or Pe states obey the same Schrödinger equation (9)
or (12), the only difference being their behaviour, ei-
ther symmetric or antisymmetric under the transforma-
tion ζ → −ζ.

For the Po states of H+
2 , the two coupled Schrödinger

equations obeyed by F and G are equivalent as one is ob-
tained from the other one by changing ζ into −ζ. From
equations (13, 15), it can be seen that the singlet states
are obtained if G(R, ρ, ζ) = F̃ (R, ρ, ζ) = F (R, ρ,−ζ),
and the triplet ones if G(R, ρ, ζ) = −F̃ (R, ρ, ζ). The two
equivalent equations can be seen as the following scalar
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Schrödinger equation:

(T dir + V dir)F ± (T exch + V exch)F̃ =

E

([(
ζ +

R

2

)2

+ ρ2

]
F ±

[
ζ2 − R2

4
+ ρ2

]
F̃

)
. (18)

The sign + or − stands for singlet or triplet states. This
is no longer a usual partial derivative equation, but also a
functional equation, since it connects F and F̃ .

To summarize this discussion, we have considered all
the symmetry properties of the Hamiltonian of H+

2 , and
obtained, for the J = 0 and J = 1 states, the structure
of the wave-functions and the scalar Schrödinger equation
which they obey.

2.3 Connection with the molecular quantum numbers

As mentioned above, the only symmetries of the three-
body problem are the rotational invariance, the parity Π
and the exchange P12 for a system with two identical par-
ticles, as H+

2 or D+
2 . Thus, there are only two exact quan-

tum numbers J and M to describe the eigenstates, i.e.,
two invariants related to a continuous symmetry. When J
and M are fixed, diagonalizing the exact Hamiltonian of
H+

2 provides four series of eigenvalues, one series for each
value of the discrete symmetries (Π, P12). The energy
levels obtained in each series can just be labelled consec-
utively by a single integer. Although the system has six
degrees of freedom in the center of mass frame, each eigen-
state cannot be labelled by six quantum numbers, a direct
consequence of the non separability of the problem.

The usual description of the molecular states of H+
2

uses a different set of quantum numbers, introduced in
the frame of the Born-Oppenheimer (B.O.) approxima-
tion. Because the two nuclei are much heavier than the
electron, the coupling terms of the Hamiltonian between
different values of T in equation (5) are small and can be
neglected. Consequently, we have an additional approx-
imate symmetry, namely the rotation around the inter-
nuclear axis, and Λ = |T | becomes a good quantum num-
ber. Moreover, the remaining electronic and vibrational
problem is separable [17] using the variables η, ξ and R,
where ξ = (r1 + r2)/R and η = (r1 − r2)/R are the
spheroidal or elliptical coordinates. The electronic prob-
lem provides us with two Schrödinger equations along the
η and ξ coordinates, which depend on Λ and R, but not
on J or M . The solutions are labelled by the two quan-
tum numbers nη and nξ, which count the number of zeros
of the η or ξ wave-functions. The electronic energies thus
depend on three quantum numbers nη, nξ and Λ and are
functions of the inter-nuclear distance R. Figure 1 shows
the energy curves correlated to the two lowest dissociation
limits. This is the effective potential for the Schrödinger
equation along the inter-nuclear coordinate R. For each
set of (J , nη, nξ, Λ), there is a series of vibrational levels
(below the dissociation limit) and a continuum (above the
dissociation limit). The B.O. wave-function with parity Π

0.0 10.0 20.0 30.0
Internuclear distance R (a.u.)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

en
er

gy
 (

a.
u.

)

1,0,0

2,0,0

3,0,0

0,0,1

0,0,0

Fig. 1. Born Oppenheimer potential energy curves, correlated
to the first and the second dissociation limits. Full lines corre-
spond to binding curves and dashed lines to dissociative curves.
The curves are indexed by the molecular quantum numbers nη,
nξ and Λ (see Tab. 1).

writes:

Ψ
JM;nηnξΛv
Π = (DJ∗

MΛ(Ψ, θ, Φ)+Π(−1)J+ΛDJ∗
M−Λ(Ψ, θ, Φ))

×NΛ,nη(η) ΞΛ,nξ(ξ) FJ,nη ,nξ,Λ,v(R). (19)

When Λ = 0, only one parity, namely Π = (−1)J , is al-
lowed. It is only for Λ 6= 0 states that both parities are
allowed. They are degenerate, at least in the B.O. approx-
imation. Finally, in the usual spectroscopic notation for
homonuclear molecules, the electronic parity πe, or u/g
symmetry, is used instead of P12. They are related by

Π = πeP12. (20)

With respect to πe, the angular and radial parts of the
B.O. wave-function have respectively (−1)Λ and (−1)nη
signatures, and consequently, that of the B.O. wave func-
tion is (−1)Λ+nη .

The B.O. wave-function is labelled by six quantum
numbers, as expected for a separable system with six de-
grees of freedom. Two of them, J and M , are exact good
quantum numbers, related to exact symmetries; the four
other ones, namely nη, nξ, Λ and v, are approximate quan-
tum numbers, related to symmetries that hold in the frame
of the B.O. approximation, but are broken in the exact
treatment of the three-body problem.

Consequently, for a given value of J , the different vi-
brational series and continua obtained at the B.O. ap-
proximation with the same parity Π and the same ex-
change symmetry P12 are all mixed together in the exact
treatment, and give a series of discrete levels below the
first dissociation limit, and one or several continua above,
with some discrete levels embedded in these continua. Of
course, because the B.O. approximation is a good one, es-
pecially for the low lying part of the spectrum, the struc-
ture of the levels is not deeply affected. We will use here
the usual molecular orbital notation, where the different
orbitals with the same Λ and πe are distinguished by their
quantum numbers in the united atom limit, i.e. by the
atomic orbital corresponding to the limit R → 0 of the
molecular orbital.
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Table 1. Correspondence between exact and molecular quan-
tum numbers of the H+

2 molecular ion.

molecular quantum numbers exact

diss. limit orbital nη nξ Λ J Π P12 terms

1 1sσg 0 0 0 0 1 1 1Se

1 −1 −1 3Po

...

2pσu 1 0 0 0 1 −1 3Se

1 −1 1 1Po

...

2 3dσg 2 0 0 0 1 1 1Se

1 −1 −1 3Po

...

2pπu 0 0 1 1 1 −1 3Pe

−1 1 1Po

...

4fσu 3 0 0 0 1 −1 3Se

1 −1 1 1Po

...

Table 1 gives the correspondence between the exact
quantum numbers (for J ≤ 1) and the molecular quan-
tum numbers, for the electronic states correlated to the
two lowest dissociation limits, which support bound vi-
brational levels.

3 Numerical implementation

The Schrödinger equations we have obtained in Section 2
have to be solved numerically. The method consists in di-
agonalizing the matrix representing the Hamiltonian in a
convenient basis. The choice of the basis has to obey sev-
eral constraints if we want to obtain highly accurate well
converged energy levels:

– the matrix elements have to be computed using exact
simple formulae in closed form;

– for maximum simplicity, we require to use “inde-
pendent” coordinates, i.e., coordinates in which the
Hilbert space appears as a tensor product of Hilbert
spaces along each coordinate. This makes it possible
to use basis states which are tensor products of simple
states along each coordinate;

– we have to choose a basis in which the Hamiltonian has
strong coupling rules – i.e. most of the matrix elements
vanish – to get a sparse band matrix, in order to use
very efficient diagonalization algorithms. A sufficient
condition (see below) is that the Hamiltonian can be
expressed as a combination of polynomial functions of
the coordinates and the conjugate momenta;

– the long range behavior of the basis functions must be
an exponential decrease in the inter-particle distances,

as expected for highly excited states of the three body
Coulomb problem.

We now show how those four characteristics can be
obtained thanks to the use of the perimetric coordinates.

3.1 Perimetric coordinates

In the Hamiltonian, the potential diverges if one of the
inter-particle distances r1, r2 or R vanishes. This diver-
gence can be regularized through multiplication of the
Schrödinger equation by 8r1r2R. Of course, there is a
price to pay: even for S and Pe states, the scalar energy
E is turned into a positive non diagonal operator EB.
The Schrödinger equation becomes a generalized eigen-
value problem, which is written as:

A|Ψ〉 = EB|Ψ〉, (21)

where A = AS = 8r1r2RHS and B = BS = 8 r1r2R
in the case of S states. For P states, the Schrödinger
equation is multiplied by 4 for convenience, so that A =
APe

= 32 r1r2RHPe
and B = BPe

= 32 r1r2R3ρ2 for Pe

states and A = APo
= 32 r1r2RH

Po
and B = BPo

=
32 r1r2R M†M for Po states.

The kinetic terms in the A and B operators are poly-
nomials in R, ρ, ζ, ∂/∂R, ∂/∂ρ, ∂/∂ζ, but the potential en-
ergy term in A contains square roots, and we have not
been able to find a convenient basis where A has strong
coupling rules. We thus have to use an other set of co-
ordinates. To remove the square roots, we could work
with the radial coordinates (r1, r2, R). The operators A
and B are polynomials in r1, r2, R, ∂/∂r1, ∂/∂r2, ∂/∂R.
However, those coordinates are not independent, since
their ranges are connected by the triangular inequalities
|r1 − r2| ≤ R ≤ r1 + r2, and the Hilbert space is not
a tensor product of Hilbert spaces along the r1, r2 and
R coordinates. The set of spheroidal coordinates, inher-
ited from the Born Oppenheimer approximation, is a good
candidate to represent the first energy levels of a given
symmetry, as it directly incorporates some useful physical
properties of the system. On the other hand, it lacks any
simplicity in the matrix elements, and becomes inappro-
priate for the heavy numerical calculations required for
highly excited states.

The perimetric coordinates satisfy all the required cri-
teria. They are defined by:

x = r1 + r2 −R,
y = r1 − r2 +R,

z = −r1 + r2 +R. (22)

The ranges of x, y and z are independent. They are
0 ≤ x < ∞, 0 ≤ y < ∞ and 0 ≤ z < ∞. The effect
of the parity and exchange operators on the perimetric
coordinates are:

Π: x→ x P12: x→ x

y → y y → z

z → z z → y, (23)
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They are connected to R, ρ and ζ by:

R =
y + z

2
,

ρ2 = xyz
x+ y + z

(y + z)2
,

ζ =
(y − z)(2x+ y + z)

4 (y + z)
· (24)

The expressions of the operators A and B in perimetric
coordinates for the S, Pe or Po states can be deduced from
the operators in (R, ρ, ζ) by a tedious but straightforward
calculation. They are polynomials in x, y, z , ∂/∂x, ∂/∂y,
∂/∂z. For example, the operators for S states of H+

2 have
been published by Saavedra et al. [18]. In the Appendix,
we give the integral expressions of the scalar product of
two wave functions of a given symmetry, as well as com-
pact expressions of the S and Pe Hamiltonians.

3.2 Choice of the basis

The structure of the partial differential equations we have
to solve is now very simple. Each term of the potential or
of the energy operator B is a polynomial in the perimetric
coordinates. Each contribution to the kinetic terms is the
product of a polynomial in x, y and z by a first or sec-
ond order partial derivative with respect to x, y or z. The
long range behavior of the basis functions has to match
that of the wave-functions (an exponential decrease in the
case of the Coulomb interaction) in order to obtain a good
description of the excited levels with a basis as small as
possible. Therefore, we have to use a basis built with or-
thonormal functions in each coordinate x, y and z defined
in [0,∞[, and having an exponential decrease at infinity.
A solution is to use Laguerre polynomials.

More precisely, a vector of the basis is defined by:

|n(α)
x , n(β)

y , n(β)
z 〉 = |n(α)

x 〉 ⊗ |n(β)
y 〉 ⊗ |n(β)

z 〉, (25)

where |n(α)〉 is the basis state whose wave-function is
〈u|n(α)〉 = χ

(α)
n (u). α and β are two positive real param-

eters, whose choice is discussed below. The χ(α)
n (u) func-

tions are chosen to be orthonormal with respect to the
scalar product in perimetric coordinates, which depends
on the class of states under study (see Appendix A.1). For
the S and Po states, the scalar product in perimetric coor-
dinates involves the weight dxdy dz. Thus we introduce:

χ(α)
n (u) = (−1)n

√
α L(0)

n (αu) e−αu/2, (26)

where L(p)
n are the generalized Laguerre polynomials [19].

These states form a complete orthogonal basis for this
scalar product.

For the Pe states, the scalar product involves the
weight xdx ydy zdz and we define:

χ(α)
n (u) =

(−1)n
√
α√

n+ 1
L(1)
n (αu) e−αu/2. (27)

In equation (25), α−1 and β−1 are two length scales. The
long range behavior of the basis functions is, in terms of
the radial distances:

e−αr1/2e−αr2/2e(−β+α/2)R. (28)

For homonuclear molecular ions, r1 and r2 play symmetric
roles, and it is thus natural to choose the same parameter
β along the y and z coordinates. For most of the energy
levels computed here, the optimum values of α and β verify
β � α, and we can consider that α−1 gives the electronic
length scale while β−1 mainly determines the inter-nuclear
length scale. This is no longer true for weakly bound levels,
close to a dissociation limit, for which we have α ≈ β.

Because of their structure, all the terms in the Hamil-
tonian have strong coupling rules (see Appendix A.2):
non-zero matrix elements between |nx, ny, nz〉 and |nx +
∆nx, ny + ∆ny, nz + ∆nz〉 are obtained only if |∆nx|,
|∆ny|, |∆nz| and |∆nx|+ |∆ny|+ |∆nz| are smaller than
2, 2, 2, 3 for S states, 3, 3, 3, 4 for Pe states, and 4, 4, 3, 5
for Po states, giving respectively 57, 123 and 215 coupling
rules. The analytical calculation of the matrix elements
of the various contributions to the Hamiltonian is very
tedious and has been performed using the symbolic calcu-
lation language Maple V. The results are directly output
in FORTRAN code. An example of such a matrix element
is given in Appendix A.2.

For the S and Pe states of H+
2 and D+

2 , the singlet
and triplet wave functions obey the same Schrödinger
equation, the only difference being the symmetric or anti-
symmetric character with respect to the exchange of y and
z. We thus use a symmetrized or antisymmetrized basis
(the length scales α and β are omitted):

|nx, ny, nz〉± =
|nx, ny, nz〉 ± |nx, nz, ny〉√

2
· (29)

The vector indices are restricted to ny ≤ nz or ny <
nz. This symmetrization requires the length scales in the
y and z directions to be equal, in order to preserve the
coupling rules.

For Po states, the radial F function has no longer any
symmetry with respect to the exchange of y and z, so the
basis vectors are simply |nx, ny, nz〉. In the case of S states
of HD+, the basis vectors are also |nx, ny, nz〉.

3.3 Numerical diagonalization

To perform the numerical calculations, the basis is trun-
cated at nx +ny +nz ≤ N and nx ≤ Nx, with Nx ≤ N . If
the basis is symmetrized (resp. antisymmetrized), we add
the condition ny ≤ nz (resp. ny < nz). The total number
of basis states Ntot scales as N2Nx.

The various basis vectors are ordered using an algo-
rithm which builds a sparse band matrix with a width as
small as possible. The width (defined as the maximum dis-
tance in the ordered basis between two coupled vectors)
scales as NNx and it is typically a few percent of the size
of the basis. Of course, it increases with the number of
coupling rules.
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Fig. 2. Convergence region, in a logarithmic scale, for (a)
v = 4 and (b) v = 17 J = 0 1sσg states corresponding to the
1Se symmetry. The labels indicate the level of convergence. The
size of the basis is here N = 96 and Nx = 20, with 40 846 func-
tions. The width of the matrix is 1 846.

The diagonalization of the generalized eigenvalue prob-
lem (21) is performed with the Lanczos algorithm [20].
The amount of required memory and the efficiency of this
algorithm depend on the width of the matrix.

The truncation of the basis turns the length scales α−1

and β−1 into variational parameters. They have to be opti-
mized, in order to minimize the eigenenergies of the Hamil-
tonian. Since the dependence on the variational parame-
ters decreases if the size of the basis increases, and because
we wish to determine as many levels as possible, we have
basis sets as large as possible, limited by the amount of
memory of the computers (up to 1 GB is used on our local
workstations, and up to 32 GB on a Cray T3E supercom-
puter). Both α and β parameters are scanned on a range
large enough to observe the minimum of each eigenvalue.
In practice, we obtain, for most of the eigenenergies, a well
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v=14

v=0
v=1

..

.

Fig. 3. Convergence contours at the 10−12 level for all the
energies converged with N = 96 and Nx = 20, from v = 0 to
v = 17.

defined region in the parameter space, where the energy
does not depend on the variational parameters. Then, each
eigenenergy is determined with an accuracy limited only
by the numerical noise due to round off errors. A typical
accuracy of the order of 10−14 is reached, as expected
in double precision FORTRAN code. The convergence
properties are illustrated in Figures 2 and 3. Note that
the 10−14 accuracy is obtained for J = 0 states only. For
J = 1 states, there is a small numerical unstability of the
algorithm – probably related to the condition number of
the matrices A and B – that prevented us from calculating
more than eleven or twelve significant digits.

4 Numerical results

The energies of all the J = 0 and J = 1 bound levels of
the H+

2 or D+
2 molecular ions below the first dissociation

limit have been computed. As shown in Table 1, the rovi-
brational levels of the 1sσg electronic ground state have
1Se or 3Po symmetries, while the 2pσu excited states are
either 3Se or 1Po states. There is no Pe state below the
first dissociation limit (see Tab. 1). The numerical results
we have obtained in that case will be presented elsewhere.
The convergence control procedure is detailed only for the
1Se states, but the same procedure has been used for all
the levels reported here. All the numerical values shown
in this paper have been checked to be well converged at
the level of the last printed digit.

The 1986 fundamental constants [21] are used. The
proton to electron mass ratio and the deuteron to electron
mass ratio are 1 836.152 701 and 3 670.483 014. The atomic
unit of energy is 219 474.630 67 cm−1.

4.1 1Se states of H+
2

4.1.1 Convergence region

The convergence of the results is illustrated in Figures 2–4.
For these computations, the truncation bounds have been
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Fig. 4. (a) Eigenvectors coefficient distribution Px(nx) versus
nx. (b) Pz(nz) versus nz. The size of the basis is N = 96,
Nx = 20 with 40 846 functions and the variational parameters
are α = 1.7 and β = 8.

limited to N = 96 and Nx = 20. The basis contains
40 846 functions, the (half-)width of the matrix is 1 846
and the required memory is about 500 MBytes. Figure 2
shows the convergence region in the (α, β) space for (a)
the 5th and (b) the 18th level. This is a logarithmic con-
tour plot of the difference between the energy obtained for
parameters α and β and the best value obtained with a
larger basis (see Tab. 2). The contour levels are shown in
the figure. For the 5th level, one observes a wide region in
which the convergence at the 10−13 level is achieved. The
dashed lines correspond to the 10−14 contour. Its irregular
shape arises from the numerical noise. For the 18th level,
the energy is converged only at the 10−13 level in a small
region because the basis is not large enough. Of course,
convergence at the 10−14 level is obtained with a larger
basis (Tab. 2). Figure 3 shows the convergence regions at
the 10−12 level for the v = 0 to v = 17 states. When
v increases, the region becomes narrower in the β direc-
tion, and is shifted down to smaller values of β. Indeed,
the wave functions have larger and larger extensions in
R, and thus need smaller and smaller β values to be well
represented by our basis functions. On the other hand,
they have faster and faster oscillations, which cannot be
represented if the basis is too small. This is why the two
highest levels are not obtained with the small basis chosen
here, but require a larger basis size.

4.1.2 Convergence of the eigenvectors

When the best parameter region is found (around α = 1.7
and β = 8 from Fig. 3), the quality of the results is checked

Table 2. J = 0 1sσg energy levels of the H+
2 molecular ion be-

low the dissociation limit, corresponding to the 1Se symmetry.
The proton to electron mass ratio is 1 836.152 701. In the last
column, we give numerical details, namely the size of the basis
used, and the optimal values of the two variational parameters
α and β. Three sets of computations have been done, using (i)
N = 120, Nx = 20, Ntot = 66 046. The matrix width is 2 397.
α = 1.1, β = 7.4; (ii) N = 160, Nx = 26, Ntot = 121 486,
width = 3 444, α = 1.1, β = 2.75; and (iii) N = 220, Nx = 30,
Ntot = 332 696, width = 6 946, α = 1.1, β = 2.5. All the digits
shown in this table are converged.

v energy param.

(atomic units)

0 −0.597 139 063 123 40 (i)

1 −0.587 155 679 212 75 ”

2 −0.577 751 904 595 47 ”

3 −0.568 908 498 966 77 ”

4 −0.560 609 221 133 07 ”

5 −0.552 840 750 219 66 ”

6 −0.545 592 651 349 00 ”

7 −0.538 857 387 347 02 ”

8 −0.532 630 379 752 64 ”

9 −0.526 910 124 421 61 ”

10 −0.521 698 369 420 35 ”

11 −0.517 000 365 677 16 ”

12 −0.512 825 203 527 19 ”

13 −0.509 186 248 723 35 ”

14 −0.506 101 681 286 51 ”

15 −0.503 595 085 267 77 ”

16 −0.501 695 773 593 16 ”

17 −0.500 437 040 589 81 (ii)

18 −0.499 837 432 075 58 ”

19 −0.499 731 230 655 8 (iii)

−0.499 727 839 716 47 diss. limit

by analyzing the eigenvector expansion on the basis. Each
eigenvector |Ψ〉 is numerically known as:

|Ψ〉 =
∑

0≤nx≤Nx
0≤ny≤nz≤N
nx+ny+nz≤N

Cnxnynz |nx, ny, nz〉±. (30)

The eigenvectors |Ψ〉 are normalized for the scalar product
defined in Appendix A.1. They verify the normalization
condition 〈Ψ | BS |Ψ〉/32 = 1. We introduce the projection
operator Pnx onto the subspace with fixed nx value. We
have:

Pnx |Ψ〉 =
∑

0≤ny≤nz≤N
ny+nz≤N−nx

Cnxnynz |nx, ny, nz〉±. (31)

We then determine the weight of Pnx |Ψ〉 in |Ψ〉 by com-
puting the overlap:

Px(nx) = 〈Ψ |BSPnx |Ψ〉/32. (32)
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The similar quantity Pz(nz) is also computed. Figure 4
shows Px and Pz as functions of nx and nz in a logarithmic
scale. The dependence of Px on nx is an exponential de-
crease. That of Pz on nz exhibits first a flat behavior, and
then an exponential decrease indicating that calculation
gets converged. This figure shows that the basis trunca-
tion can be more drastic in the x-direction than in the y
and z-directions. This is connected to the fact that the
vibrational excitation of H+

2 can increase a lot before
the electronic part of the wave-function significantly
changes. The coefficient distributions for the levels v = 0
to v = 17 indicate that the convergence is obtained, but
the distribution for v = 18 and v = 19 is nearly flat with-
out any decay, showing that the basis is not large enough
to give the energies of those levels. Again, increasing the
boundary along the z coordinates (i.e., increasing the ba-
sis size) makes it possible to have these levels converged
too.

4.1.3 Results

Our results for the 1Se states of H+
2 are listed in Table 2.

Note that we have obtained all the vibrational states of
the 1sσg electronic ground state. Except for the last one,
the energies are known with an accuracy of 10−14. Most
of them can be obtained using the truncation bounds
N = 120 and Nx = 20. The last vibrational level requires
a very large basis, with N = 220 and Nx = 30, containing
332 696 functions. The values of the variational parame-
ters α and β for which the results can be obtained are
given in the tables. They were chosen close to the center
of the convergence region. The size of the region is shown
in Figures 2 and 3.

4.1.4 Comparison with previously published results

Several authors have published accurate energy levels of
some J = 0 1sσg states of H+

2 corresponding to the 1Se

symmetry. But, up to now, only Moss has computed all
of them. He achieved fully non adiabatic calculations us-
ing a basis built from Laguerre and Legendre polynomials
of the spheroidal electronic coordinates, and gave all the
dissociation energies with an accuracy of 10−11 [22]. Our
results are in full agreement with those of Moss, but with
an improved accuracy.

Much more work have been devoted to the two first
1Se states of H+

2 , allowing a more detailed comparison, as
summarized in Table 3. In 1998, we have demonstrated
the efficiency of our method [10], and given the first two
vibrational levels of H+

2 with a 10−12 relative accuracy. At
that time, we used only one variational parameter α, and
β had to be set to 2α. Saavedra et al. [18] have published
the ground state energy of several three body Coulomb
systems, obtained with exactly the same method. They
reached the same accuracy than in [10], but with a much
smaller basis, thanks to the introduction of the second
variational parameter β.

Rebane and Filinsky [23] have also computed the
ground state energy of many three body molecular ions us-

Table 3. Comparison of the most accurate energies for the J=
0 v= 0, 1 1sσg states of H+

2 (1Se symmetry). The uncertainty
on the last figure is indicated. In reference [25], Moss used
two different methods, namely a variational method (a), and a
scattering method with a transformed Hamiltonian (b).

state reference energy

v = 0 Grémaud [10] −0.597 139 063 123 (1)

Saavedra [18] −0.597 139 063 123

Moss [25](a) −0.597 139 063 123 4 (2)

[25](b) −0.597 139 063 123 5 (2)

Rebane [23] −0.597 139 063 123 40

Taylor [24] −0.597 139 063 123 9 (5)

this work −0.597 139 063 123 40 (1)

v = 1 Moss [25](a) −0.587 155 679 212 7 (2)

Moss [25](b) −0.587 155 679 212 8 (2)

Taylor [24] −0.587 155 679 213 6 (5)

this work −0.587 155 679 212 75 (1)

ing perimetric coordinates and variational computations,
i.e. a method probably very close to our method, but still
unpublished. The ground state energy of H+

2 that they
obtained coincides with our values at the 10−14 level.

More recently, two high precision calculations of the
energy levels of H+

2 have been published [24,25]. Both used
a variational method, which differs from the one described
here by the fact that the electronic wave function is ex-
pressed in terms of the prolate spheroidal coordinates ξ
and η. Taylor et al. [24] have published the first rovibra-
tional energies of H+

2 for (v, J) = (0, 0), (0, 1) and (1, 0)
with an accuracy of 5 × 10−13. Moss [25] gives the same
results, with a improved accuracy of 10−13. Finally, in
the same paper [25], Moss also uses a scattering method,
together with a transformed Hamiltonian, and obtains re-
sults in agreement with the previous ones at the level of
10−13.

In summary, our results are the most accurate ones on
the whole sequence of vibrational levels, and agree per-
fectly well with the (less accurate) previously published
results. This makes us confident on the reliability of our
numerical code.

4.2 J = 1 1sσg states of H+
2

To obtain the rovibrational states of the ground electronic
state of H+

2 with J = 1, the 3Po Hamiltonian has to be di-
agonalized. In that case, the Schrödinger equation is more
complicated than in the S state case, since it couples the
radial wave function F (x, y, z) to F̃ (x, y, z) = F (x, z, y)
through the exchange terms of the Hamiltonian. The non-
zero matrix elements of the Hamiltonian not only come
from the 215 coupling rules of the direct terms, but also
from 205 pseudo-rules due to the exchange terms. Indeed,
a coupling rule (∆nx, ∆ny, ∆nz) of an exchange term
connects the vector |nx, ny, nz〉 to the vector |n′x, n′y, n′z〉 =
|nx + ∆nx, nz + ∆ny, ny + ∆nz〉, and induces a pseudo-
rule δnx = ∆nx, δny = n′y − nz and δnz = n′z − ny.
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Table 4. J = 1 1sσg energy levels of H+
2 corresponding to

the 3Po symmetry. The parameters are: (i) N = 58, Nx = 24,
Ntot = 28 850, width = 3 054, α = 1.5, β = 10.5; (ii) N = 120,
Nx = 26, Ntot = 159 741, width = 10 776, α = 1.1, β = 5; (iii)
N = 140, Nx = 26, Ntot = 223 731, width = 13 294, α = 1.1,
β = 2.5. All the digits shown in this table are converged.

v energy param.

(atomic units)

0 −0.596 873 738 83 (i)

1 −0.586 904 321 04 ”

2 −0.577 514 034 24 ”

3 −0.568 683 708 50 ”

4 −0.560 397 171 69 ”

5 −0.552 641 171 88 ”

6 −0.545 405 344 31 ”

7 −0.538 682 224 62 ”

8 −0.532 467 311 60 ”

9 −0.526 759 185 07 ”

10 −0.521 559 686 76 ”

11 −0.516 874 175 03 ”

12 −0.512 711 867 25 ”

13 −0.509 086 284 72 ”

14 −0.506 015 805 76 ”

15 −0.503 524 279 59 ”

16 −0.501 641 393 74 (ii)

17 −0.500 400 984 63 ”

18 −0.499 821 792 38 ”

19 −0.499 728 84 (iii)

−0.499 727 839 716 diss. limit

We denote them pseudo-rules because they depend on the
values of ny and nz. Since we have |∆nx| ≤ 4, |∆ny| ≤ 3,
|∆nz| ≤ 3 and |∆nx| + |∆ny| + |∆nz| ≤ 5 for the ex-
change coupling rules, we obtain 205 pseudo-rules. Finally,
we have up to 420 non-zero matrix element per row of
the Hamiltonian matrix. Consequently, the width of the
Po matrices is much larger than in the Se case. In addi-
tion, for Po states, the basis is not symmetrized. Thus, for
the same bounds on N or Nx, the basis is nearly twice as
large. Available computer memory leads to smaller bounds
for Po states than for S states. As a consequence, the ac-
curacy of the eigenenergies is smaller, and it is difficult
to obtain convergence for the highly excited vibrational
levels. The energies are given in Table 4. The accuracy
is only at the level of 10−11. This is due to round off er-
rors. Because of the increased sizes of the matrices, they
accumulate more rapidly than for 1Se states; this could
also be due to ill-conditioned matrices in the case of 3Po

states, which have eigenvalues separated by several orders
of magnitude. In Table 5, we compare our values to the
high accuracy values previously published. Although they
are slightly less accurate because of round off errors, our

Table 5. Comparison of the most accurate energies for the J=
1 v=0, 1 1sσg states of the H+

2 molecular ion (3Po symmetry).
The uncertainty on the last figure is indicated. For (a) and (b),
see the caption of Table 3.

state reference energy

v = 0 Moss [25] (a) −0.596 873 738 832 7(2)

[25] (b) −0.596 873 738 832 8(2)

Taylor [24] −0.596 873 738 832 8 (5)

this work −0.596 873 738 83 (1)

v = 1 Moss [25] (a) −0.586 904 321 039 4 (2)

[25] (b) −0.586 904 321 039 6 (2)

this work −0.586 904 321 04 (1)

Table 6. J = 0 and J = 1 2pσu energy levels of the H+
2

molecular ion corresponding to the 3Se and 1Po symmetry.
The size of the basis and the variational parameters are: (i)
N = 96, Nx = 26, Ntot = 48 034, α = 1, β = 1.5 and (ii)
N = 50, Nx = 30, Ntot = 21 886, α = 0.6, β = 1.2.

state reference energy param.

J = 0 Moss [22] −0.499 743 49

v = 0 Taylor [24] −0.499 743 502 21(1)

this work −0.499 743 502 216 06(1) (i)

J = 1 Moss [22] −0.499 739 268 0

v = 0 Taylor [24] −0.499 739 267 93(2)

this work −0.499 739 267 984(1) (ii)

results agree with the published ones and cover the full
sequence of vibrational levels.

4.3 J = 0 and J = 1 2pσu states of H+
2

The 2pσu electronic curve of H+
2 has a long range min-

imum, which supports one bound state for J = 0 or 1.
Those states have either the 3Se or the 1Po symmetries
(see Tab. 1). The computation of the 3Se and 1Po states
are similar to that for the 1Se and 3Po states. The only
difference are in equations (18, 29), where the choice of
the + or − signs has to be inverted. For 3Se states, the
indices of the basis vectors have to obey ny < nz. The ac-
curacy for the 3Se states is better than for the 1Po states,
because, for a given amount of memory on the computer,
the basis can be chosen much larger for 3Se states. Since
the 1Po state is closer to the dissociation limit, the ex-
tension of the wave function is wider. This explains why
the variational parameters are smaller. Table 6 compares
our results to the published values. Again, our values are
more accurate, and agree with the previous results.

4.4 Results for D+
2

Similar calculations have been done for all the Se and Po

energy levels of D+
2 below the first dissociation limit. We

obtain 28 bound levels corresponding to the 1sσg elec-
tronic level of 1Se and 3Po symmetries, listed in Table 7.
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Table 7. J = 0 and J = 1 1sσg energy levels of the D+
2 molec-

ular ion below the first dissociation limit, corresponding to the
1Se and 3Po symmetries. The basis size and the variational
parameters for the J = 0 states are: (i) N = 110, Nx = 20,
Ntot = 44 626, the width of the matrix is 1 999, α = 1.7, β = 10;
(ii) N = 180, Nx = 30, Ntot = 216 756, width = 5 520, α = 1.2,
β = 6.2; (iii) N = 220, Nx = 30, α = 0.9, β = 4. For the
J = 1 states, they are: (iv) N = 54, Nx = 24, Ntot = 28 850,
width = 3 054, α = 1.2, β = 19; (v) N = 120, Nx = 20,
Ntot = 130 921, width = 9 408, α = 1.7, β = 10; (vi) N = 140,
Nx = 26, Ntot = 223 731, width = 13 294, α = 1.3, β = 7; (vii)
N = 140, Nx = 26, α = 1.1, β = 5. All the digits shown in this
table are converged.

v 1Se energy param. 3Po energy param.

(atomic units) (atomic units)

0 −0.598 788 784 330 68 (i) −0.598 654 873 22 (iv)

1 −0.591 603 121 903 21 ” −0.591 474 211 53 ”

2 −0.584 712 207 009 99 ” −0.584 588 169 62 ”

3 −0.578 108 591 436 87 ” −0.577 989 311 96 ”

4 −0.571 785 598 647 78 ” −0.571 670 974 44 ”

5 −0.565 737 302 952 55 ” −0.565 627 243 61 ”

6 −0.559 958 514 224 37 ” −0.559 852 941 53 ”

7 −0.554 444 768 147 12 ” −0.554 343 616 12 ”

8 −0.549 192 322 064 81 ” −0.549 095 537 11 ”

9 −0.544 198 156 604 08 ” −0.544 105 697 81 ”

10 −0.539 459 983 348 84 ” −0.539 371 822 93 ”

11 −0.534 976 258 967 65 ” −0.534 892 382 86 ”

12 −0.530 746 206 332 14 ” −0.530 666 615 03 ”

13 −0.526 769 843 322 19 ” −0.526 694 552 89 ”

14 −0.523 048 020 189 49 ” −0.522 977 063 66 (v)

15 −0.519 582 466 538 98 ” −0.519 515 895 61 ”

16 −0.516 375 849 160 87 ” −0.516 313 736 44 ”

17 −0.513 431 842 030 72 ” −0.513 374 283 88 ”

18 −0.510 755 209 601 28 ” −0.510 702 329 90 ”

19 −0.508 351 903 540 02 ” −0.508 303 858 66 ”

20 −0.506 229 169 984 35 ” −0.506 186 155 52 ”

21 −0.504 395 655 362 65 ” −0.504 357 915 53 ”

22 −0.502 861 471 807 00 ” −0.502 829 312 71 ”

23 −0.501 638 094 774 32 (ii) −0.501 611 903 43 ”

24 −0.500 737 626 393 37 ” −0.500 717 894 62 ”

25 −0.500 169 272 907 36 ” −0.500 156 588 49 ”

26 −0.499 919 155 031 61 ” −0.499 913 606 76 (vi)

27 −0.499 868 405 490 (iii) −0.499 866 91 (vii)

−0.499 863 815 249 02 diss. limit

The first rovibrational levels are compared with the re-
sults already published in Table 8. Finally, Table 9 gives
the two J = 0 and the J = 1 bound states correspond-
ing to the 2pσu first electronic excited state (3Se and 1Po

symmetries), and compares them with the published val-
ues. The conclusions are essentially similar to the ones
obtained for H+

2 : with our method, we are able to com-

Table 8. Comparison of the most accurate energies for the
J = 0 and J = 1 1sσg states of the D+

2 molecular ion, for v = 0
and v = 1. The uncertainty on the last figure is indicated.

state reference energy

J = 0 Moss [25](a) −0.598 788 784 330 7 (2)

v = 0 [25](b) −0.598 788 784 330 7 (2)

Rebane [23] −0.598 788 784 33

Taylor [24] −0.598 788 784 330 8 (1)

this work −0.598 788 784 330 68 (1)

J = 0 Moss [25](a) −0.591 603 121 903 2 (2)

v = 1 Moss [25](b) −0.591 603 121 903 4 (2)

Taylor [24] −0.591 603 121 903 2 (1)

this work −0.591 603 121 903 21 (1)

J = 1 Moss [25](a) −0.598 654 873 220 5 (2)

v = 0 [25](b) −0.598 654 873 220 5 (2)

Taylor [24] −0.598 654 873 220 5 (5)

this work −0.598 654 873 22 (1)

J = 1 Moss [25](a) −0.591 474 211 528 6 (2)

v = 1 [25](b) −0.591 474 211 528 7 (2)

this work −0.591 474 211 53 (1)

Table 9. J = 0 and J = 1 2pσu energy levels of the D+
2

molecular ion corresponding to the 3Se and 1Po symmetries.
The size of the basis and the variational parameters are: (i)
N = 96, Nx = 26, Ntot = 48 034, width = 2 253, α = 1.2,
β = 1.5; (ii) N = 96, Nx = 26, α = 1.2, β = 0.8; (iii) N = 50,
Nx = 30, Ntot = 21 886, width = 2 306, α = 1.2, β = 1.5.

state author reference energy param.

J = 0 Moss [22] −0.499 888 937 5

v = 0 Taylor [24] −0.499 888 937 71 (1)

this work −0.499 888 937 709 33 (1) (i)

J = 0 Moss [22] −0.499 865 221 0

v = 1 Taylor [24] −0.499 865 217 (5)

this work −0.499 865 221 089 45 (1) (ii)

J = 1 Moss [22] −0.499 886 382 5

v = 0 Taylor [24] −0.499 886 382 63 (1)

this work −0.499 886 382 629 9 (1) (iii)

pute all the vibrational sequence with an improved accu-
racy. No disagreement is found with previously published
results.

4.5 Mass effect

Highly accurate energy levels of H+
2 could be used for mea-

suring the proton to electron mass ratio M/m. A high
accuracy frequency measurement of an optical transition
between two rovibrational states of H+

2 can be done us-
ing a Doppler free two-photon transition. It should be em-
phasized that such an experiment will give an information
that can be interpreted either as a M/m measurement, or
a study of the relativistic and QED corrections in H+

2 . We
discuss here these two aspects.
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Table 10. Slope of the J = 0 1sσg energy levels as a function
of M/m. The results are given in atomic units. All the digits
shown are converged, and the precision given is large enough to
extrapolate the energy levels with a relative accuracy of 10−14

if the mass variation is less than 10−4 a.u. around 1 836.152 701
for H+

2 and 3 670.483 014 for D+
2 . T is the relative sensitivity of

the transition frequencies to the proton to electron mass ratio
defined in equation (33).

H+
2 D+

2

v slope T slope T

0 −1.5503 × 10−6 −0.46997 −0.5374 × 10−6 −0.47898

1 −4.1056 × 10−6 −0.43899 −1.4751 × 10−6 −0.45756

2 −6.3539 × 10−6 −0.40599 −2.3342 × 10−6 −0.43530

3 −8.3092 × 10−6 −0.37019 −3.1173 × 10−6 −0.41200

4 −9.9825 × 10−6 −0.33064 −3.8271 × 10−6 −0.38737

5 −11.3813 × 10−6 −0.28604 −4.4654 × 10−6 −0.36111

6 −12.5105 × 10−6 −0.23465 −5.0339 × 10−6 −0.33283

7 −13.3712 × 10−6 −0.17408 −5.5339 × 10−6 −0.30207

8 −13.9616 × 10−6 −0.10090 −5.9661 × 10−6 −0.26826

9 −14.2759 × 10−6 −0.01010 −6.3311 × 10−6 −0.23066

10 −14.3046 × 10−6 0.10603 −6.6289 × 10−6 −0.18838

11 −14.0333 × 10−6 0.25981 −6.8590 × 10−6 −0.14025

12 −13.4425 × 10−6 0.47228 −7.0207 × 10−6 −0.08475

13 −12.5065 × 10−6 0.78226 −7.1125 × 10−6 −0.01403

14 −11.1924 × 10−6 1.26958 −7.1326 × 10−6 0.05718

15 −9.4592 × 10−6 2.12550 −7.0786 × 10−6 0.15016

First, we have determined the dependence of the 1Se

energies of H+
2 on M/m by computing them for 21 val-

ues of M/m around the 1986 codata values, separated
by a 10−5 a.u. step. The slope ∂E/∂(M/m) is deter-
mined by a least square linear fit. The results are given in
Table 10. The order of magnitude of the slope is a few
10−6 in atomic units. The third column of Table 10 gives
the relative sensitivity of the v → v+1 transition frequen-
cies on the M/m ratio defined as:

Tv =
M/m

ωv

∂ ωv
∂ M/m

, (33)

where ωv denotes the v → v+ 1 transition frequency. The
order of magnitude of Tv for the first transitions is close to
−0.5, which is the value expected if the nuclear vibration
was harmonic. The dependence of Tv on v shows that the
sensitivity of the v → v + 1 transition frequency on M/m
decreases with v. M/m is presently known with a relative
accuracy of 2.1 × 10−9 [26,27]. Thus, the relative uncer-
tainty on the predicted transition frequencies due to the
accuracy of the M/m ratio is of the order of 10−9 for the
first transitions. To be compared with some spectroscopic
data upon H+

2 , the energies computed here have to be cor-
rected of relativistic and QED effects. Moss [22,28,29] has
determined these relativistic and QED corrections for the
rovibrational levels of the 1sσg electronic states. The cor-
rections are given with an accuracy of 10−4 cm−1. Then,
their contribution to the relative uncertainty on the low-

est v → v + 1 transition frequencies is about 5 × 10−8.
The accuracy of the relativistic and QED corrections has
to be improved by at least two orders of magnitude to
allow a M/m measurement through the H+

2 spectroscopy.
We have briefly discussed elsewhere the possibility to com-
pute these corrections more accurately [10]. It should be
noted that, in any case, this calculation requires a good
knowledge of the exact three body wave functions, which
is provided by the method described in this paper.

In a forthcoming paper, we will present the calculation
of the two-photon transition matrix elements between two
rovibrational states of H+

2 or D+
2 , and we will discuss the

feasibility of a Doppler free two-photon spectroscopy ex-
periment between two Se states. In such an experiment,
the width of the transition is expected to be very small
because the levels are very long lived. Such an experiment
could thus measure a transition frequency with a relative
accuracy of 10−10 or better. So far, it would provide a
measurement of the difference of the corrections between
the two states involved in the transition, with an accuracy
limited by the uncertainty on M/m. Yet any significant
progress on the calculation of the corrections would turn
the experiment into a M/m measurement.

5 Se states of HD+

In this section, we give the energies of the 1sσ states of
the HD+ molecular ion below the first dissociation limit
(Se symmetry). Here the quantity 1/µ12 is computed from
the proton to electron mass ratio 1 836.152 701 and from
the deuteron to proton mass ratio 1.999 007 496 also taken
from [21]. The basis is not symmetrized, and consequently,
for the same truncation bounds as for H+

2 , the basis is
nearly twice as large. We were able to obtain convergence
at the 10−14 level for most of the energy levels on usual
workstations, with less than 1 GB of memory. The last
vibrationally excited states required extremely large basis
sets, and the last level corresponding to v = 22 is con-
verged only at the 10−10 level. The results are given in
Table 11. All of them, but the last one, agree with the
dissociation energies given by Moss [30]. Once more, our
results are the most accurate ones for the full sequence of
vibrational levels.

6 Summary and conclusion

In this paper, we have described a new method to treat
a three body Coulomb system. This method takes advan-
tage of all the symmetries of the system, including dy-
namical symmetries. Perimetric coordinates are used to
describe the relative positions of the three particles, and
generalized Hylleraas type basis functions are introduced,
which correctly describe the asymptotic behavior of the
wave-functions. Two length scales are used as variational
parameters. Some comments can be done on this method:

a. obviously, it allows to compute very accurate values of
the energy levels of the system. It also provides high
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Table 11. 1sσ energy levels of the HD+ molecular ion below
the dissociation limit. The size of the basis and the variational
parameters are: (i) N = 80, Nx = 20, Ntot = 54 061, width =
2 309, α = 2, β = 10; (ii) N = 160, Nx = 26, Ntot = 298 521,
width = 6 508, α = 1.4, β = 7.5; (iii) N = 160, Nx = 26,
α = 1.3, β = 5; (iv) N = 200, Nx = 26, Ntot = 480 501,
width = 8 372, α = 1, β = 3. All the digits shown in this table
are converged.

v energy param.

(atomic units)

0 −0.597 897 968 644 84 (i)

1 −0.589 181 829 653 33 ”

2 −0.580 903 700 369 05 ”

3 −0.573 050 546 750 85 ”

4 −0.565 611 042 318 30 ”

5 −0.558 575 521 103 93 ”

6 −0.551 935 949 266 56 ”

7 −0.545 685 915 628 61 ”

8 −0.539 820 641 902 02 ”

9 −0.534 337 013 932 52 ”

10 −0.529 233 635 946 89 ”

11 −0.524 510 910 556 38 ”

12 −0.520 171 148 158 82 ”

13 −0.516 218 710 336 09 ”

14 −0.512 660 192 612 32 ”

15 −0.509 504 651 672 98 ”

16 −0.506 763 878 125 82 ”

17 −0.504 452 699 135 14 ”

18 −0.502 589 234 013 41 (ii)

19 −0.501 194 799 285 79 ”

20 −0.500 292 454 306 87 ”

21 −0.499 910 361 490 78 (iii)

22 −0.499 865 778 5 (iv)

−0.499 863 815 249 02 dissociation limit

quality wave-functions, as shown by the exponential
decrease of the weights in Figure 4;

b. because the basis functions have been chosen with
the convenient asymptotic behavior, this method is
suitable to accurately describe the highly excited vi-
brational levels. The electronically excited states can
also be described, if the complex rotation method is
used [11,12];

c. our method is deeply J dependent. We used it here to
study the J = 0 and J = 1 states. Obviously, for higher
J values, this method is less and less convenient. It is
suitable only for very low J values.

The method is here applied to the H+
2 molecular ion

and its isotopomers D+
2 and HD+. The energies of all the

J = 0 and 1 states below the first dissociation limit have
been computed. Our results are given with an accuracy up
to 10−14 atomic unit. Their dependences on the proton to

electron mass ratio M/m are also given. Finally, the in-
terest of a high precision two-photon spectroscopy exper-
iment in H+

2 is discussed. Presently, such an experiment
would give information on the relativistic and radiative
corrections. Only if the theoretical predictions of those
corrections would be known with two additional figures,
a measurement of M/m with some metrological interest
could be extracted from such an experiment.

Laboratoire Kastler Brossel de l’Université Pierre et Marie
Curie et de l’École Normale Supérieure is UMR 8552 du CNRS.
We are grateful to IDRIS, which has provided us with many
hours of computation on large memory computer facilities. We
are also grateful to Philippe Thomen, who has worked on the
derivation of the HD+ Hamiltonian in perimetric coordinates.
The authors thank P. Indelicato for a careful reading of the
manuscript.

Appendix A

A.1 Scalar product expressions

We recall here the structure of the wave-functions, and
give the radial part of the scalar products for the S, Pe

and Po states. The angular part of the scalar product is
normalized using the standard spherical harmonics. The
volume element is :

R2dR ρdρ dζ = (x+ y)(x+ z)(y + z)/32 dx dy dz.

In each case, the scalar product involves the positive B
operator (representing the energy operator).

For Se states:

Ψ =
1√
8π2

ϕ(x, y, z),

〈Ψ1|Ψ2〉S =
〈
ϕ1

∣∣∣∣ BS

32

∣∣∣∣ ϕ2

〉
=
∫ ∫ ∫

(x+ y)(y + z)(z + x)
32

×ϕ∗1(x, y, z)ϕ2(x, y, z) dxdy dz.

For Pe states:

Ψ =
(D1∗

M,1(ψ, θ, φ) +D1∗
M,−1(ψ, θ, φ))

√
2

Rρ ϕ(x, y, z),

〈Ψ1|Ψ2〉P
e

=
〈
ϕ1

∣∣∣∣ BPe

128

∣∣∣∣ ϕ2

〉
=
∫ ∫ ∫

(x+ y + z)(x+ y)(y + z)(z + x)
128

× ϕ∗1(x, y, z)ϕ2(x, y, z)xdx ydy zdz.
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AS = α−1

�
AS

1 +
1

2µ12
AS

2 +
1

2µ0
AS

3

�
+ α−2 V S,

AS
1 = −4 γ2 (Uy + Uz)

2 Px − 4 γ (Uy + Uz) Qx − 4 γ
�
U2
z Py + U2

y Pz + Uz Qy + Uy Qz − iSy iS2z − iSz iS2y

�
,

AS
2 = −4 γ2 (U2

y + U2
z ) Px − 4 γ (Uy + Uz) Qx −

8

γ

�
U2
x +

γ2

2
U2
z + γUx Uz

�
Py − 8 (Ux +

γ

2
Uz) Qy

− 8

γ

�
U2
x +

γ2

2
U2
y + γUx Uy

�
Pz − 8 (Ux +

γ

2
Uy) Qz + 4 iSx (iS2y + iS2z) + 4 iS2x (iSy + iSz),

AS
3 = 4 γ Qx (Uy − Uz)− 4 iSx (iS2y − iS2z) + 4 γ iS2x (iSz − iSy)

+8 Ux (UyPz − UzPy) + 4 γ2 Px (U2
y − U2

z ) + 4 γ (U2
y Pz − U2

z Py)− 4 γ (Qy Uz −Qz Uy),

V S = −16γ
�
Ux +

γ

2
(Uy + Uz)

�
(Uy + Uz) + 8 (Ux + γUy)(Ux + γUz),

BS = 8 α−3 γ (Ux + γUy)(Ux + γUz)(Uy + Uz),

For Po states:

Ψ = D1∗
M,0(ψ, θ, φ) Φ0(x, y, z)

+
(D1∗

M,−1(ψ, θ, φ) −D1∗
M,1(ψ, θ, φ))

√
2

Φ1(x, y, z)

with

(
Φ0

Φ1

)
= M

(
F

G

)
,

〈Ψ1|Ψ2〉P
o

=
〈(

F1

G1

) ∣∣∣∣ BPo

128

∣∣∣∣
(
F2

G2

)〉
, (34)

〈Ψ1|Ψ2〉P
o

=
∫ ∫ ∫

(x+ y)(y + z)(z + x)
128

×
(
F1

G1

)†( (x+ y)2 x(x+ y + z)− yz

x(x+ y + z)− yz (x+ z)2

)(
F2

G2

)

× dxdy dz.

A.2 Derivation of the matrix elements
of S and Po states

As mentioned in Section 3.2, when using the perimetric
coordinates x, y, z, each term of the kinetic part of the
Hamiltonian appears as a product of a polynomial in x, y,
z by a first or second order partial derivative with respect
to x, y and z. In order to obtain the matrix elements of the
Hamiltonian, we have to efficiently take into account the
recurrence and differential properties of the Laguerre poly-
nomials family [19]. At a deeper level, we can construct
a Lie algebra of operators that have simple connections
with the various operators of interest (i.e., perimetric co-
ordinates and associated momenta) such that the Hilbert

space appears as a representation (preferably irreducible)
of the associated Lie group.

In the specific case of S and Po states of H+
2 or HD+,

we introduce the following Hermitean operators, written
for a variable u, and a length scale α−1:

S1 =
1
α

(
u
∂2

∂u2
+

∂

∂u

)
+ α

u

4
,

S2 = i
(
u
∂

∂u
+

1
2

)
,

S3 = − 1
α

(
u
∂2

∂u2
+

∂

∂u

)
+ α

u

4
· (35)

The commutation relations of those operators are closed:

[S1, S2] = −iS3, [S2, S3] = iS1, [S3, S1] = iS2, (36)

and characterize the SO(2, 1) group (Lorentz group in two
spatial dimensions). Thus S1, S2 and S3 appear as the
generators of a SO(2, 1) group and equations (35) define a
representation of SO(2, 1) for which the Casimir operator
can be computed as S2

1 + S2
2 − S2

3 = 1/4. It follows that
the Hilbert space is a single irreducible representation of
the SO(2, 1) group of type D+

1/2 [31].

u, u∂/∂u and u∂2/∂u2 can be expressed as linear com-
binations of S1, S2 and S3, and consequently, each term
of the Hamiltonian can be expressed as a combination of
the generators of three different SO(2, 1) groups.

For the S state Hamiltonian, the expressions
are simpler if the following Hermitean operators
U = S1 + S3, P = S1 − S3, Q = S2

1 − S2
3 and

S = (S1 + S3) S2 + S2 (S1 + S3) are introduced. For
example, we give the expressions of the operators A and
B of equation (21):

see equations above

where γ = α/β.
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〈a, b, c|AS
2 |a, b, c〉 = − (4 + 8 γ b c+ 2 γ + 12 a+ 4 b+ 6 γ3 a b2 + 6 γ3 a b+ 6 γ3 a c2 + 6 γ3 a c

+16 γ a b c+ 6 γ b+ 2 γ2 a2 b+ 2 γ2 a b+ 2 γ2 a2 c+ 2 γ2 a c+ 2 γ b2 + 4 γ a+ 6 γ c

+2 γ c2 + 6 γ2 b+ 2 γ2 a+ 2 γ2 + 4 γ3 a+ 3 γ3 b2 + 2 γ3 + 12 a2 + 12 a b+ 12 a2 b+ 12 a c

+4 c+ 12 a2 c+ 4 γ a b2 + 4 γ a c2 + 12 γ a b+ 12 γ a c+ 16 γ2 b c+ 4 γ2 b2 + 4 γ2 c2

+6 γ2 c+ 2 γ2 a2 + 3 γ3 c+ 3 γ3 c2 + 8 γ2 b2 c+ 8 γ2 b c2 + 3 γ3 b)/γ.

As all the operators involved in the generalized eigen-
value problem, equation (21), can be expressed in terms
of the generators S1, S2 and S3, it is natural to use a ba-
sis where the generators have simple matrix elements. We
choose the standard basis for the D+

1/2 representation of
the SO(2, 1) group [31], i.e., eigenstates of the S3 oper-
ator that are labelled with a non-negative integer n. All
matrix elements of the generators are known and simple.
They have strong coupling rules (n changes by at most
one unit) and are given by:

S1|n〉 =
n+ 1

2
|n+ 1〉+

n

2
|n− 1〉,

iS2|n〉 =
n+ 1

2
|n+ 1〉 − n

2
|n− 1〉,

S3|n〉 =
(
n+

1
2

)
|n〉. (37)

The wave-functions in the standard basis are also known.
They are:

〈u|n(α)〉 = (−1)n
√
α L(0)

n (αu) e−αu/2. (38)

A vector of the basis used for the full problem (defined in
Eq. (25)) is a tensor product over the three perimetric co-
ordinates |n(α)

x , n
(β)
y , n

(β)
z 〉, where different length scales

are used in the x and y, z coordinates.
From the coupling rule |∆n| ≤ 1 of the elementary

operators S1, iS2, S3, one can deduce those of U and P
(|∆n| ≤ 1) and of Q and iS (|∆n| ≤ 2). The detailed
expression of the Se Hamiltonian shows that the cou-
pling rules connecting the basis vectors |nx, ny, nz〉 and
|nx +∆nx, ny +∆ny, nz +∆nz〉 are given by |∆nx| ≤ 2,
|∆ny| ≤ 2, |∆nz| ≤ 2 and |∆nx| + |∆ny| + |∆nz | ≤ 3
as announced in Section 3.2. The matrix elements of the
Hamiltonian can be easily deduced from those of S1, iS2,
S3, using a symbolic calculation language like Maple V.
Here, we only give as an example the diagonal matrix
element of the term depending on m/M :

see equation above.

The terms of the operator APo
can be expressed using the

same elementary operators. The expressions are too long
to be reported here.

A.3 Derivation of the matrix elements of Pe states

In the case of Pe states, because the scalar product in-
volves the weight xdx ydy zdz, the previous generators
are no longer Hermitean. We thus have to define a new
set of Hermitean operators:

S1 =
1
α

(
u
∂2

∂u2
+ 2

∂

∂u

)
+ α

u

4
,

S2 = i
(
u
∂

∂u
+ 1
)
,

S3 = − 1
α

(
u
∂2

∂u2
+ 2

∂

∂u

)
+ α

u

4
· (39)

The commutation relations are still [S1, S2] = −iS3,
[S2, S3] = iS1 and [S3, S1] = iS2, and the interpretation
in terms of group theory is similar. The Casimir operator
is now computed as S2

1 + S2
2 − S2

3 = 0. Thus, the Hilbert
space spans a D+

1 representation of the SO(2, 1) group.
The standard basis is again composed of eigenstates of S3

and the matrix elements of the generators are:

S1|n〉 =

√
(n+ 1)(n+ 2)

2
|n+ 1〉+

√
n(n+ 1)

2
|n− 1〉,

iS2|n〉 =

√
(n+ 1)(n+ 2)

2
|n+ 1〉 −

√
n(n+ 1)

2
|n− 1〉,

S3|n〉 = (n+ 1)|n〉.

Finally, the wave-functions of the basis states are:

〈u|n(α)〉 =
(−1)n

√
α√

n+ 1
L(1)
n (αu) e−αu/2. (40)

The expression of the Pe Hamiltonian involves the
Hermitean operators U = S1 + S3, M = S1 − S3,
Q = S2

1 −S2
3 , N = (S1 +S3)S2 +S2(S1 +S3), F = U M U
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APe
= α−2

�
APe

1 +
1

2µ12
APe

2 +
1

2µ0
APe

3

�
+ α−3 V Pe

,

APe

1 = 8 γ3 (−Mx Uy
3 − 3 Mx Uy

2Uz − 3Mx UyUz
2 −Mx Uz

3)

+8 γ2 (−Uy
3Mz −MyUz

3 − 2Qx Uy
2 − 4Qx UyUz − 2Qx Uz

2 − 2Uy
2Qz

−2QyUz
2 −UyUz −UyFz − FyUz + iNy iNz + 2iS2y iGz + 2iGyiS2z)

+8 γ (−Ux Uy
2Mz −Ux MyUz

2 −Ux UyQz −Ux QyUz + Ux iNy iS2z + Ux iS2y iNz − Fx Uy − Fx Uz ),

APe

2 = −8 γ3 (Mx Uy
3 + Mx Uy

2Uz + Mx UyUz
2 + Mx Uz

3)

+8 γ2 (−Uy
3Mz −MyUz

3 − 2Qx Uy
2 − 2Qx UyUz − 2Qx Uz

2

+iS2xUy iNz + iS2xiNyUz − 2Uy
2Qz − 2QyUz

2 + 2iS2xiGy + 2iS2xiGz −UyFz − FyUz )

+8 γ (−3Ux Uy
2Mz − 3Ux MyUz

2 − 5Ux UyQz

−5Ux QyUz + iNxUy iS2z + iNxiS2yUz −Ux Uy − 2Ux Fy −Ux Uz

−2Ux Fz − Fx Uy − Fx Uz + iNxiNy + iNxiNz)

+16 (−2Ux
2UyMz − 2Ux

2MyUz − 2Ux
2Qy − 2Ux

2Qz + iGxiS2y + iGxiS2z) +
−16Ux

3My − 16Ux
3Mz

γ
,

APe

3 = 16(Ux
2UyMz −Ux

2MyUz − iGxiS2y + iGxiS2z)

+8 γ3 (Mx Uy
3 + Mx Uy

2Uz −Mx UyUz
2 −Mx Uz

3)

+8 γ2 (Uy
3Mz −MyUz

3 + 2Qx Uy
2 − 2Qx Uz

2

+iS2xUy iNz − iS2xiNyUz + 2Uy
2Qz − 2QyUz

2 − 2iS2xiGy + 2iS2xiGz + UyFz − FyUz )

+8 γ (3Ux Uy
2Mz − 3Ux MyUz

2 + 3Ux UyQz − 3Ux QyUz + iNxUy iS2z − iNxiS2yUz + Ux Uy −Ux Uz

+Fx Uy − Fx Uz − iNxiNy + iNxiNz),

V Pe
= −16γ(Uz + Uy)(γUy + γUz + 2Ux )(Ux + γUy + γUz ) + 16(γUy + Ux )(Ux + γUz )(Ux + γUy + γUz ),

BPe
= 16α−4γ(Uz + Uy)(γUy + Ux )(Ux + γUz )(Ux + γUy + γUz ). (41)

and G = US2U . We have:

see equations (41) above.

The coupling rules are |∆n| ≤ 1 for U and M , |∆n| ≤ 2
for Q and iN , and |∆n| ≤ 3 for F and iG. The structure
of the Hamiltonian explains the coupling rules |∆nx| ≤ 3,
|∆ny| ≤ 3, |∆nz| ≤ 3 and |∆nx|+ |∆ny|+ |∆nz| ≤ 4 given
in equation (3.2).
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